坦天文台”,人类发现了不少天上的x『射』线源,其中有30个以上是x『射』线超新星遗迹。1572年出现的隆庆彗星即第古新星,就留下了x『射』线遗迹。超新星冲击波使得星际介质温度高达几百万开并辐『射』出强烈的x『射』线。这是一颗典型的1型超新星。
使用『射』电望远镜可以发现仅由最稀薄气体构成的超新星遗迹。比如,是『射』电天文学家最先发现了仙后座a这一超新星遗迹,后来在光学波段也发现了它的极暗弱的对应体。
超新星爆发和宇宙线的产生也有一定的关系。星际介质中的粒子运动速度一般都在每秒几十千米范围内,但是也有某些特殊情况——有的粒子运动速度可以接近光速,这就是宇宙线。宇宙线是由一些物质粒子如电子、质子等组成的,在本质上完全不同于电磁波。一般说来,由于地球大气对宇宙线的吸收作用,有探测宇宙线必须到大气层之外。
如果搭乘气球上升到50千米的高空,就可以用底片拍摄宇宙线的踪迹。只有极少数能量极高的宇宙线可以到达地球表面。但是,当高能宇宙线与地球大气发生作用时,会引发一种闪光效应,同时产生二级宇宙线,在地球表面探测二级宇宙线是相对容易的。
继续阅读,后面更精彩!
实验表明,一些能量较低的宇宙线受到太阳活动的影响。比如,太阳活动有一个11年左右的周期,而观测到的低能宇宙线也随着这个周期而有所变化。
另外,当太阳活动增强时,会使得地球周围的磁场增强,从而使在地球上观测到的宇宙线活动减弱。
相反地,宇宙线流量的最大值往往出现在太阳耀斑等活动最小的时刻。观测也表明,绝大部分宇宙线是来自遥远的宇宙深处的超新星爆发。
因为宇宙线常常会因为星际磁场的作用而改变运动方向,我们很难判断它的辐『射』源在哪里。
但宇宙线在与星际介质发生作用时,会辐『射』出г『射』线;而г『射』线是电磁波,运动方向不再受磁场的影响。
美国宇航局曾发『射』了专门观测宇宙г『射』线的人造卫星。观测结果表明,宇宙г『射』线的分布与发现的超新星的分布有很好的相关『性』。这就在很大程度上支持了宇宙线来自超新星爆发的观点。
超新星事件和新星事件还有一个本质『性』的区别,即新星的爆发只发生在恒星的表面,而超新星爆发发生在恒星的深层,因此超新星爆发的规模要大的多。超新星爆发时散落到空间的物质,对新的星际介质乃至新的恒星的形成有着重要的贡献,但这些物质来自死亡恒星的外壳。
超新星处于许多不同天文学研究分支的交汇处。超新星作为许多种恒星生命的最后归宿,可用于检验当前的恒星演化理论。
在爆炸瞬间以及在爆炸后观测到的现象涉及各种物理机制,例如中微子和引力波发『射』、燃烧传播及爆炸核合成、放『射』『性』衰变及激波同星周物质的作用等。而爆炸的遗迹如中子星或黑洞、膨胀气体云起到加热星际介质的作用。
超新星在产生宇宙中的重元素方面扮演着重要角『色』。大爆炸只产生了氢、氦以及少量的锂。红巨星阶段的核聚变产生了各种中等质量元素(重于碳但轻于铁)。
而重于铁的元素几乎都是在超新星爆炸时合成的,它们以很高的速度被抛向星际空间。此外,超新星还是星系化学演化的主要“代言人”。在早期星系演化中,超新星起了重要的反馈作用。星系物质丢失以及恒星形成等可能与超新星密切相关。
由于非常亮,超新星也被用来确定距离。将距离同超新星母星系的膨胀速度结合起来就可以确定哈勃常数以及宇宙的年龄。在这方面,ia型超新星已被证明是强有力的距离指示器。最