制在有限的时间内,控制时间的本身会因为库尔特的极限而受到程序的影响无法做出预测,但是由于非停止程序的原因,可以被记述的宇宙的表述非常明确的包含其中。另外,他对相对受限的可以进行极快运算的宇宙集合提出了明确的异议。
针对平行宇宙的主要争论在于,它们很浪费并且很离奇,来依次考虑这两点。首先,平行宇宙理论很容易被奥卡姆剃刀原理所攻击,因为它们假设了其他宇宙存在,而人们却永远观测不到。为何自然在本体上如此浪费,并沉溺于这些多到无穷无尽的不同世界,但这一点也可以反过来支持平行宇宙。当人们觉得自然过于浪费时,人们到底是在困『惑』关于它浪费的哪一点,显然不是“空间”,因为标准的平坦宇宙模型中无限的体积并没有引起这样的反对。也不是“物质”或“原子”——理由相同,一旦已经浪费了无限的东西,谁在乎再浪费多点呢。
所以,这种令人困『惑』的“浪费”倒不如说是一种简化,它减少了说明所有这些不可见世界所需的信息量。然而,正如泰马克详细讨论过的那样,整个集合往往要比集合中的单个元素简单得多。例如,一个普通整数n的算法信息内容在 量级上,这就是将它用二进制写出来所需要的比特数。然而,所有整数的集合,1,2,3,…,只需要寥寥几行计算机程序就能生成,所以整个集合的算法复杂度要远小于其中某个整数。
继续阅读,后面更精彩!
同样,爱因斯坦引力场方程的全部理想流体解的集合,算法复杂度要远低于其中某个特解,因为前者只需要很少几个方程就能描述,而后者要求在某个超曲面指定大量的初始数据。不严格地说,当人们把注意力局限在一个集合中的某个特定元素上时,表观信息的内容增加了,却失去了将所有元素考虑进来时整个系统内在的对称『性』和简单些。在这个意义上,更高层的平行宇宙具有更低的算法复杂度。
从通常宇宙升到第一层平行宇宙,就不再需要指定初始条件,升到第二层,就不需要指定物理常数,到了包含所有数学结构的第四层平行宇宙,本质上就不存在算法复杂度了。只有从青蛙视角,从观测者的主观感觉来看,才有那些信息富余和复杂『性』。可以证明,平行宇宙论要比只取一个集合元素作为物理存在的单个宇宙理论经济得多。
第二个普遍的抱怨是,平行宇宙太离奇了。但这个反对多半来自审美上,而非科学上的考虑,然而正如上面提到的,这个意见只有在亚里士多德的世界观中才有意义。在柏拉图模型中,如果鸟的视角和青蛙视角足够不同,很可能看到的是,观察者会抱怨正确的toe如此离奇,而每个迹象都说明这正是人们所处的情形。
人们所感到的离奇也没有什么好大惊小怪的,因为进化只赋予了人们对日常物理的直觉,能够使人们远古的祖先生存下来。但由于有了智慧和创造,人们已经比只有一般内部观点的青蛙视角稍微多窥见了一些东西,可以确信的是,人们在超出人类原始认知的任何地方到遭遇了奇异现象:高速(钟慢效应)、小尺度(量子粒子能同时存在于好几个地方)、大尺度(黑洞)、低温(能向上流的『液』氦)、高温(碰撞粒子能改变身份),等等。
所以,物理学家大体上已经接受了,鸟的视角和青蛙视角是很不相同的。量子场论的一个现代流行观点是,标准模型也仅仅只是一个有效的理论,是另一个还没发现的理论的低能极限,而后者与舒服的经典概念相去甚远(例如,包含十维的弦)。
许多实验学家已经对这么多“离奇”(但重复『性』很好)的结果感到麻木了,他们简单地接受了“这个世界就是一个比人们原想的世界更离奇”这样的观点,然后埋头继续计算。
长久的学习,让华枫觉得日子变得规律的同时,